時系列解析(10)-季節調整モデルと成分分解・信号抽出配布用

東京大学 数理・情報教育研究センター 北川 源四郎

季節調整法

標準的方法

循環変動成分を加えた方法

長期予測の精度

data(BIsallfood) season(BIsallfood, 2, 1) \$tau2 [1] 7.229607e-01 1.099998e-08 \$sigma2 [1] 32.89071 \$lkhood [1] -669.6522 \$aic [1] 1369.304

season(Blsallfood, 2, 1, 2)

 \$tau2
 [1] 7.229536e-03 1.099771e-08 9.999101e-01

 \$sigma2
 [1] 27.02489

 \$lkhood
 [1] -648.2725

 \$aic
 [1] 1336.545

 \$arcoef
 [1] 1.3579988 -0.5400455

8e-08

y(n) and trend component

Seasonal component

noise

y(n) and trend component

Seasonal component

長期予測 (n=133,156)

season(Blsallfood, 2, 1, filter=c(1,132))

Seasonal component

predicted values

長期予測 (n=133,156)

season(Blsallfood, 2, 1, 2, filter=c(1,132))

150

100

п

0

data(Whard) # Wholesale hardware data season(Whard, 2, 1, 0, 6, year=1967, log=TRUE)

n

曜日調整

曜日調整

曜日効果の時間変化の検出

低S/Nデータからの信号抽出

状態空間モデル

$$x_{n} = F x_{n-1} + G w_{n}$$
$$y_{n} = H x_{n} + \varepsilon_{n}$$

微小信号の抽出

微小地震波の抽出

状態空間モデルを利用実用化には自己組織型

P-波と S-波の分離

地下水位データ (地震の影響の抽出)

観測データ

気圧,潮汐,降水の強い 影響を受ける 地震の影響の検出が困難

成分構造モデル

AIC Values

т	0	1	2	3
•				
23	-57819	-59368	-59498	-59488
24	-57815	-59374	-59536	-59526
25	-57830	-59393	-59580	-59569
26	-57836	-59386	-59575	-59563
27	-57832	-59379	-59566	-59554

k	AIC
1	-61675
2	-61734
3	-61803
4	-61800
5	-61810
6	-61809

移動平均フィルタ

何か知見が得られるか?

地震の影響の抽出

数理手法VII(時系列解析)

-1

移動平均 vs. 統計的モデリング

求同

地震の影響の検出

1

Detection of Coseismic Effects

東京大学 北川源四郎 数理手法VII (時系列解析)

29

気圧補正後の残差のヒストグラム 気圧補正後の残差の自己相関関数 1 1000 0.8 800 0.6 600 0.4 400 0.2 200 0 0 -0.01 0.01 0 -0.2 24 72 96 0 48 120 地球潮汐の自己相関関数 1

地球潮汐補正後の地下水位,潮汐効果項,残差

東京大学 北川源四郎

数理手法VII(時系列解析)

降雨補正後の地下水位,残差,降雨効果項

マグニチュード、震源距離と地下水位変化量の関係

推定したモデルと残差の特徴

モデル	AIC	σ^2	残差分布	自己相関関数
トレンド	-21166.3	$0.181 imes 10^{-2}$	負の偏り	3日程度
気圧効果	-57635.1	$0.120 imes 10^{-5}$	正の偏り	12.5時間周期
潮汐効果	-59434.9	$0.887 imes 10^{-6}$		1日程度まで正
降雨効果	-61610.0	$0.130 imes 10^{-6}$	ほぼ対象	2時間周期

120

Basic observation model Direct wave $r_{n,j}$ $y_{n,j} = r_{n,j} + s_{n,j} + w_{n,j}$ **Reflection** wave $S_{n,j}$ Time series model $r_n = a_1 r_{n-1} + \dots + a_\ell r_{n-\ell} + v_{n,r}$ $s_n = b_1 s_{n-1} + \dots + b_m s_{n-m} + v_{n,s}$ J-1 Spatial model $k_i = \Delta T_i(W_0), \quad h_i = \Delta T_i(W_X)$ $r_{n,j} = r_{n-k_j,j-1} + u_{n,j}^r$ $T_i(W_0)$: Arrival time of W_0 $S_{n,j} = S_{n-h_j,j-1} + u_{n,j}^s$ $T_i(W_X)$: Arrival time of W_X 経路モデルと到着時刻

	経路モデ	ル 到着時刻
Parallel Layer Structure	Wave(0)	$v_0^{-1}\sqrt{h_0^2+D^2}$
Source D	Wave(000)	$v_0^{-1}\sqrt{9h_0^2+D^2}$
h_0 Water	Wave(00000)	$v_0^{-1}\sqrt{25h_0^2+D^2}$
h d_0	Wave(01)	$v_0^{-1}\sqrt{h_0^2+d_{01}^2}+v_1^{-1}(D-d_{01})$
	Wave(0001)	$3v_0^{-1}\sqrt{h_0^2+d_{01}^2}+v_1^{-1}(D-3d_{01})$
h_2	Wave(0121)	$v_0^{-1}\sqrt{h_0^2 + d_{02}^2} + 2v_1^{-1}\sqrt{h_1^2 + d_{12}^2} + v_2^{-1}(D - d_{02} - 2d_{12})$
	Wave(000121)	$3v_0^{-1}\sqrt{h_0^2 + d_{02}^2} + 2v_1^{-1}\sqrt{h_1^2 + d_{12}^2} + v_2^{-1}(D - 3d_{02} - 2d_{12})$
\mathbf{u}_2	Wave(012321)	$v_0^{-1}\sqrt{h_0^2 + d_{03}^2} + 2v_1^{-1}\sqrt{h_1^2 + d_{13}^2} + 2v_2^{-1}\sqrt{h_2^2 + d_{23}^2} + v_3^{-1}d_3$

Width $h_0, h_1, h_2, h_3 \cdots km$ Velocity $v_0, v_1, v_2, v_3 \cdots km/sec$

$$d_{ij} = v_i h_i / \sqrt{v_j^2 - v_i^2}, \quad d_3 = D - d_{03} - 2d_{13} - 2d_{23}$$

経路モデルと到着時刻 (OBS4)

	Epicentral Distance (km)				
Path Model	0	5	10	15	20
Wave0	1.7	32.3	34.4	34.8	35.0
Wave000	0.6	21.6	29.7	32.4	33.5
Wave00000	0.3	14.9	24.1	28.8	31.1
Wave011		10.5	15.4	17.2	17.9
Wave01221		12.9	14.7	15.1	15.3
Wave012321	_	_	10.2	10.2	10.2

時空間構造モデルによる分解

